

Human Space Flight Architecture Team (HAT) Overview

Chris Culbert
NASA/Johnson Space Center

GER Workshop, November 2011

Exploration Capability Development and Testing

NASA Policy

Authorization Act Strategic Goals **Budget**

Inplementation

NASA Centers

HSF Architecture Team

Architectures • Elements • Trade Studies • Technology & Capability Requirements

Cross-Directorate Capability Integration

- Exploration Technology Testing & Demonstration Strategy
- Analogs Objectives
- ISTAR

Opportunity Development

Partnerships

- Global Exploration Roadmap
- NASA/partner DRMs
- Academia
- Element development

Exploration Capabilitites Requirements

HEO Orgs

- ESD
- AES
- analogs
- robotic precursors
- SI PSR

Call for Technology **Proposals**

Other NASA Orgs

- OCT
 - SMD
 - OCE

External Partners

- International
- OGAs
- Commercial

ISS Utilization

Mature Exploration Capabilities

- Communications
- Deep-space habitation
- Extravehicular Activity
- · In-space propulsion

- · Heavy lift
- · Launch propulsion
- · Robotic systems

NASA's Human Spaceflight Architecture Team (HAT)

- Multi-disciplinary, cross-agency study team that conducts strategic analysis cycles to assess integrated development approaches for architectures, systems, mission scenarios, and concepts of operation for human and robotic space exploration.
 - During each analysis cycle, HAT iterates and refines design reference mission (DRM)
 definitions to inform integrated, capability-driven approaches for systems planning
 within a multi-destination framework.
- Sample Activities in 2011 Cycles A, B, C
 - Prepared Design Reference Missions that frame key driving requirements for SLS & MPCV
 - Developed technical content & mission definitions for discussion with the international community developing the Global Exploration Roadmap
 - Advanced Capability Driven Framework concept including more extended reviews of both capabilities needed and development options.
 - Provided technical links between Capability Driven Framework and level 1 requirements for MPCV and SLS

Primary Transportation DRMs

Select destinations used to drive transportation systems requirements and assess impacts of changes in mission

assumptions

Proposed				
Status	ISECG	DRM ID	DRM Title	Dest.
Cycle-C	N	LEO_UTL_2A	LEO Utilization - Non-ISS	LEO
Cycle-C	Υ	CIS_LP1_1A	Lunar Vicinity - EM L-1	E-M L1
Cycle-C	Υ	CIS_LP1_1B	Lunar Vicinity - EM L-1 DSH Delivery	E-M L1
Cycle-C	Υ	CIS_LP1_1C	Lunar Vicinity - EM L-1 with Pre-deployed DSH	E-M L1
Cycle-C	Υ	CIS_LLO_1A	Low Lunar Orbit	LLO
Cycle-C	Υ	LUN_SOR_1A	Lunar Surface Polar Access - LOR/LOR	Moon
Cycle-C	Υ	LUN_CRG_1A	Lunar Surface Cargo Mission	Moon
Cycle-C	N	NEA_MIN_1A	Minimum Capability, Low Energy NEA	NEA
Cycle-C	Υ	NEA_MIN_1B	Minimum Capability, Low Energy NEA with Predeployed DSH	NEA
Cycle-C	N	NEA_MIN_2A	Minimum Capability, High Energy NEA	NEA
Cycle-C	N	NEA_FUL_1A	Full Capability, High Energy NEA with SEP	NEA
Cycle-C	Υ	NEA_FUL_1B	Full Capability, High Energy NEA with SEP and predeployed DSH	NEA
Forward				
Work	N	MAR_PHD_1A	Martian Moon: Phobos/Deimos	Mars Moon
Forward				
Work	N	MAR_SFC_1A	Mars Landing	Mars Surface

Evolution of Key Assumptions that Drive Transportation System Performance

HEFT Cycle-A Cycle-B Cycle-C

- ▶ 10% Architecture Reserve
 - on wet cargo stack (+ adapter) mass
- 2.5% launch vehicle adapter mass
 - · on wet cargo stack mass
- 1% Flight Performance Reserve (FPR) on ΔVs
- Elements Margins
 - MPCV: data provided
 - Other elements: 30% MGA
- Insertion orbit:
 - 55.56 x 240.76 km
- Crew of 3 on Lunar & NEA missions
- ♦ 25 meter SLS shroud barrel

- ♦ 5% Level I Customer Reserve
 - on wet cargo stack (+ adapter) mass
- 2.5% launch vehicle adapter mass
 - on wet cargo stack mass
- ♦ 5% Flight Performance Reserve (FPR) on ΔVs
- Elements Margins
 - MPCV: data provided
 - CPS BLK1: 15%
 - Other elements: 30% MGA
- Insertion orbit:
 - 55.56 x 240.76 km
- Crew of 3 on Lunar & NEA missions
- ♦ 25 meter SLS shroud barrel

- ♦ 5% Level I Customer Reserve
 - on wet cargo stack (+ adapter)
 mass
- 2.5% launch vehicle adapter mass
 - on wet cargo stack mass
- ◆ 5% Flight Performance Reserve (FPR) on ΔVs
- Elements Margins (Derived from AIAA Standards)
 - MPCV: data provided
 - Other elements: 30% MGA
- Insertion orbit:
 - -87 km X 241 km
- Crew of 4 on Lunar & NEA missions
- 18 meter SLS shroud barrel

- 5% Level I Customer Reserve
 - on wet cargo stack (+ adapter)
- 2.5% launch vehicle adapter mass
 - on wet cargo stack mass
- 5% Flight Performance Reserve (FPR) on ΔVs
 - Except for MPCV burns
- Elements Margins (Derived from AIAA Standards)
 - MPCV : data provided
 - CPS: BLK1 18.8%, BLK 2-21.2%
 - Lander: Margin remains on lunar surface
 - Other elements: 30% MGA
- Insertion orbit:
 - -87 km X 241 km
- Crew of 4 on Lunar & NEA missions
- 18 meter SLS shroud barrel

Full Capability, High Energy NEA (2008EV5) with SEP

NEA_FUL_1A_C11B1

NEA Exploration - Single SEV Option; 7, 14 or 30 days at NEA

Mission Summary package deployment

SEV robotic arms anchor to the NEA surface and provide astronaut platforms during EVA. The mother-ship stack, including the SEP, DSH, and MPCV, stationkeeps at a safe standoff distance. Surface activities include sample collection and deployment of probes (radar, acoustic, seismometer, etc.), experiments and planetary defense devices.

ıt						
Mission Activities	7 Day	14 Day	30 Day			
Number of deployed equipment packages	4	10	24			
Total EVA hours	48	96	192			
Number of sites visited	2	3	6			
Total Est. Mass (kg) delivered/returned	tbd/tbd	tbd/tbd	tbd/tbd			

HAT Cycle C Updates

- Cycle C work by the HAT team continued to refine the DRMs to improve both consistency and technical feasibility. Some key changes:
 - Direct injection to destination when possible
 - Removed circularization burn to 407 km x 407 km where applicable
 - Clarified boil-off requirements and identified usable propellant and dry mass of propellant units separately
 - Continued to add depth to the definition of human activities while at destinations
 - Developed and utilized consistent operational timeline assumptions
 - See back-up for assumptions
 - Improved consistency of margin analysis for many elements and phases, such as MPCV propulsive burns
 - Resolved station keeping problems
 - Deep Space Hab always attached to another element for ACS/RCS
 - Shifted DRMs between primary and supporting, added new DRMs to primary
 - To improve alignment with programmatic activities in preparation for on-going SRR

Destination Products

"Street View"
Destination DRM

Feedback to
Transportation
DRMs

Destination Elements "Baseball Cards" Ops Con/ Ops Timeline

Informing Exploration: Strategic Knowledge Gaps

- To inform mission/system planning and design and near-term Agency investments
 - Human Spaceflight Architecture Team (HAT) Destination Leads were asked to identify the data or information needed that would reduce risk, increase effectiveness, and aid in planning and design
 - The data can be obtained on Earth, in space, by analog, experimentation, or direct measurement
- For some destinations, the needed knowledge is well identified
 - Analysis Groups, such as LEAG and MEPAG, have identified pertinent measurements to gain the needed knowledge regarding the Moon and Mars
 - Significant advances in filling the knowledge gaps have been made (examples: LRO and MRO, and soon, MSL)
- The Strategic Knowledge Gaps (SKGs) identified here represent an informed and systematic look at anticipated needs
 - Inputs and comments from other agencies are welcome in order to provide for an international discussion during the January ISECG Workshop
- The SKGs will also form the basis for near-term NASA investments in robotic precursor missions through Announcements of Opportunity (AO), competed and secondary missions, etc. A few examples include:
 - New Frontiers 4 AO
 - Discovery 13 AO
 - NASA Lunar Science Institute Cooperative Agreement Notice
 - LASER (Lunar Advanced Science and Exploration Research) and SALMON (Stand Alone Missions of Opportunity Notice) calls
 - Development of early flight opportunities

Architecture Cost Analysis Approach

Element Fixed/Variable
Sandbar Chart

| Production
| Operations | Production | Prod

Cost Products

Integrated program schedule & flight manifest

Schedule and cost to develop and operate each element

Technology Development Assessment: Data Capture Process

'Tech Dev' Summary Spreadsheet (per Strategy/DRM)

- Tech Dev Data for HAT Cost Team:
 - Cost, Schedule, Phasing
 - Applicable Elements (per DRM)
- ETDD/OCT/HRP Data Inputs
- HEDS Data Inputs (e.g. AES priorities, Analogs, ISS demo candidates, etc.)
- ISECG Technology Dev Inputs